Simulation of a single red blood cell flowing through a microvessel stenosis using dissipative particle dynamics.

نویسندگان

  • L L Xiao
  • S Chen
  • C S Lin
  • Y Liu
چکیده

The motion and deformation of a single red blood cell flowing through a microvessel stenosis was investigated employing dissipative particle dynamics (DPD) method. The numerical model considers plasma, cytoplasm, the RBC membrane and the microvessel walls, in which a three dimensional coarse-grained spring RBC. The suspending plasma was modelled as an incompressible Newtonian fluid and the vessel walls were regarded as rigid body. The body force exerted on the free DPD particles was used to drive the flow. A modified bounce-back boundary condition was enforced on the membrane to guarantee the impenetrability. Adhesion of the cell to the stenosis vessel surface was mediated by the interactions between receptors and ligands. Firstly, the motion of a single RBC in a microfluidic channel was simulated and the results were found in agreement with the experimental data cited by [1]. Then the mechanical behavior of the RBC in the microvessel stenosis was studied. The effects of the bending rigidity of membrane, the size of the stenosis and the driven body force on the deformation and motion of red blood cell were discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study.

The motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating microfluidic channel is investigated using a validated low-dimensional RBC model based on dissipative particle dynamics. Specifically, the RBC is represented as a closed torus-like ring of ten colloidal particles, which leads to efficient simulations of blood flow in microcirculation over a wide range of hema...

متن کامل

GPU-accelerated red blood cells simulations with transport dissipative particle dynamics

Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red bloo...

متن کامل

Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

Submitted for the DFD14 Meeting of The American Physical Society Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries ALIREZA YAZDANI, GEORGE KARNIADAKIS, Brown University — Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly...

متن کامل

Dynamical clustering of red blood cells in capillary vessels.

We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of sprin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular biomechanics : MCB

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2014